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We define time serles in m dimensions x, as follows:
the observed variable z depends on x

tist or z = f(xli’ Xpqsee
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continuous case is similar.
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T"ime Serles in M-Dimenslons
Definition, Problems and Prospects

by Leo A. Aroian
: Union College and University
\\\\\ Schenectady, New York

\\EN, 1. Introduction
|

The purpose of this paper is to define and to consider
the problems and prospects of time serles in m dimensions.
First, the definition of time series in m dimensions, secondly
its relationship to time series in zero dimensions, whether
stationary or not, and finally the relationshlp to correlation
theory in m dimensions will be considered. The author has
been influenced by the basic work of Box éﬁsr enkins (1970)
in prediction theory. Their work in the time domain and that
of others 1n the frequency domain has forged an almost complete
solution of the problems of time series at a point. ~We are

extendling thelr results to time series in m dimensioné.
2. Definition - M-Dimensional Time Serles
We define a time serlies in zero dimensions
z(t) = £(t)

where t 18 time and z(t) is some varieble dependent on time
such as voltage, temperature, wages, economic indicators,
number of births, number of deaths, prices, crimes, social,
business, industrial, biological, medical, and environmental

conditions, Now z(t) may be gilven continuously or at discrete




Iinterval:s ol Lime, Additlonally there may be m zero

dimenslonal time serlegs namely:

zl(t) = fl(t), zp(t) = fg(t), et zm(t) = fm(t),
and interrelations such as

7y = Pi(zl,z?,...,zj,...,zm;t), 1#3,

where the z's are any ol the specific variables mentioned
previously. The time series may be known exactly at least
in theory. Usually they must be estimated and are defined
only for —m<t5t0, or t1<tsto, where to is the present time
and tl a time in the past chosen for a particular reason.
They may be stationary or if not may be transformed into

a stationary time series. Time series of one variable
{zl,t}, or of twc varilahles {Zl’ZQ’t}’ or m variables
{zl,zp,...,zm,t] are all time series In zero dimensions
even in the case of m variables. We may bhe 1interested

in prediction, in the time domain, i.e. prediction of z in the
future based on its past; or in the power spectrum in the
frequency domain.

What then is the definition of time series inm
dimensions or of n time series in m dimensions? Does the
definition include the special case of m=0? The answer to
the second question is yes. Our definition of one time

series in m dimensions is:
z(t) = f(xl,xz,....,xm;t)

for -~e<t<€w, or -o<t<t°, involves m variables XysXpseeesX, and

time t, or in all m+l independent variables. The variables




may be discrete or continuous. We may have two time series
in m dimensions and their interdependence illustrated as

follows:

il

Zl(t)

z,(t) = f2(xl’x2"“’xm;t)’

fl(xl,x2,...,xm;t)

or their interdependence
z,(t) = gl(zz,xl,xz,...,xm;t)

zQ(t) ge(zl,xl,x2,...,xm;t).

I

In general there may be n time series in m dimensions, n<m,
namely z(t)=f(x;t),z(t) and f(x3t) vectors with n components,
and x a vector with m components. Similarly there may be
any case of dependence among the 24 We do not invoke
stationarity here, although it is & helpful condltion to
assume at the onset. It should be clear then that these
definitions include all the usual cases of time serles

in zero dimensions,

Our definition may be compared with the remarks of
Hannan (1970) pages 94-95: "So far we have consldered vector
random processes x(t) in which t varles over the real llne
or some subset of it. As mentioned in Chapter I, in some
applications t would in fact be a space variable, for
example distance downstream from some fixed point on a
river where x(t) might have three components corresponding
to the "velocity" of the river. ...We shall use v agailn to
indicate the point 1in the plane so thal v necds two
coordinates to name 1t. Agaln time variatlion may be present
so that x(v,t) could be considered. Now the argument of x(.)

varies over three dimensional space." According Lo our




il

definition, this is a time series in two dimensions, or
three independent variables. We could also have the
situation of m dimensions, and p time variables conceptually:
fxi; tj} =l e il =T 2R D e

From another point of view we may have x variables
which may act as time variables when a time variable ti
does not occur. However t is a special type of varlable.

Our definitions and models of time series in m dimensions
have little or no overlap with the treatment of Bartlett
(1975). Bartlett (1975, p.vil) states: "We may dilvide
problems of spatial pattern (in contrast with completc
random chaos) into (1) detecting departures from randomness,
(ii) analysing such departures when detected, for example,
in relation to some stochastic model and (1ii) specilal
problems which require separate consideration; for example,
sophisticated problems of pattern recognition in specific
fields, such as the computer reading of handwriting or
recognition of chromosomes." Our main purpose 1s the

generalization of the predliction models of Box and Jenklns

from zero to m dimensions.
3. Two Physical Time Series in M Dimenslons

I shall give two time series in m dimensions: one,
the characteristics of the sun, and the second, characteristics
of a river. Almost all texts on time series consider the
number of sunspots over time, z(t)=f(t) a zero dimensional

time series. A time series in three dimensions, m=3,




relates the number of sun spots to regions on the sun,
each region given by spherical coordinates on the sun

say (21,22,§3). Thus z(t), the number of sunspots at

time t and position (21,?5,23),.where z@?i,t) may

either be autoregressive, moving average, or a combination
of the two.

The river characteristics may be described as a time
series either in 1, or 2 or 3 dimensions. If Xq4 represents
the pollution at the center of the rlver at point Xq4 Over
the whole length of the river, then the pollution of the
river is given by z(x ;,t) in this case. If x,,
represents pollution at the width of the river at Xq4 and
X34 the depth of the river, we obtain Z(xli’xﬁi’x31’t)’

a time series in three dimensions. We do not necessarilly
assume stationarity in z in either case. One of the

series characterize the number of sun spots on the sun

and the other the pollution of a river in much clearer
fashion than 1is possible by any time serles 1in zero
dimensions. These models show obviously that one may use
time series and statlstliecs to model the differentlal and
partial differcntial equations which underlle thesc physlcal

phenomena.
4, Assumptions and Examples

We assume essentially the same conditions on z as

Box and Jenkins. F(z) the distribution of z, f(z) the




density function,,ﬂz=0, the mean, og, the variance,
;4.0 the covariance function for z(t,) and z(tJ),

where tJ-ti is a constant, all exist. We further

assume z is stationary. Later Box and Jenkins drop the
assumptions of stationarity which we shall also do. We

need to state our assumptions introduced by the dependence
of z on the variables {xl,xz,x3,...,xm}. For simplicity

we consider the case of m=2, with the varilables {xl,xg}.

In this framework we measure z at (Xy,X,) or z(x;,x,).

The distribution of z, I(z) already defined applies over

the Al,xe—plane. This distribution 1s also the same

over the set formed by {xl,x2,t}, —o<X <P, <X, <™,

-o<t<m, although in practice we may only know z for

tsto. What is of greatest interest is the covariance
structure in the Xq5%Xp plane as compared with the covarilance
structure as time changes. This willl be made clearer

in our discussion of one simple model, the movlng average,

MA.

In the Xq5%5 plane we have the configuration

5
(0,1)

(1Q) (0,0 (1,00
(O:'l)

(0,0), (1,0), (~1,0), (0,1), and (O,-1).

The = _.le moving average model MA we shall use is:

- )
2yt 10001 %%yt -170101%x-1yt-1"%101 %%+ 1yt -1 (1)

0011%xy=1t-1700-11%y+16-1"%xy ¢,
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We replace Xy by x and X5 by y for notational convenience.
If we let all a's except 6001 equal zero we get the zero

dimensional Markov result

ZetePe 1™ (4.2)

a model which ignores the contributions from the other
points in the Xqs%5 plane. The a's are independently

distributed with mean zero and variance oi. Thus

B e T 5 o
= v = =4 ) o
0, = 9, (1400011810179 101 %8011 100-11) - (4.3)

Other conditions are found involving the coeffilclents
of correlation in the XX, plane and the correlations
in time. The correlations are between the z's in the
Xq9%, plane at time t-1; and the correlation between zxyt

and nyt—l' These are Poo1’ PO1.? P10-? P20-> Po2.3 all
the other six lag correlations are either equal to these
or determined by these. The other relations needed for

the determination of the five 9's are:

9,9001 = “a8001 (4.4.2)
0,010+ = 9a8001(7101* -101) (hhe2)
0,001+ = °§9001(9011+°o-11) (4.4.3)
°§°20- * °§ 1019101 (4.l )
95000, = 9a80-117011. (.h.5)

These equations with (h.3) determine the g'n:




> 2
8001 = ~92/P001% (4.5.1)
0.0 = [k +(k2-bk, )2} /2 )

101 = (kyt(ky-Hky)%}/2 (4.5.2)

2 0
iy, 010./P00z+ Ko = °z°20./°a

6_101 = {kl = d'ukp) }/2
o) 1
0511 = {k3+(ké—4ku)§}/2 (4.5.3)
k3 = -ng1./000105) = a5P02./%% (H.5.4)
2 1
8o.11 = (kg - (k3-Hky)%}/2 (#.5.5)

The other six autocorrelations may be obtained as functions
of these. The conditions ki - Wk 20, k%-ukuzo, do not
always hold in the real domain, Only 1f we assume the
errors a;g_j and a_101 equal; and a01l_and a5_11 equal
may we avoid these restrictions., If ki —Mk?=0,

% froit 2 e O i
101 = 6_101, and if kg Lku—O, 9011 90_11.
What conditions must the coefficlients of correlatlon

8

statisfy? In this simple example —15p00151, —lﬂpOI.:l,

o 2 4 e itk
1=p1,.51s pgp,s1-20%,; and p,q <1-2p",, . Certaln special
cases may be found by eliminating the points (0,1),(0,-1)

if 6011 and eo_ll |

be reanalyzed if the point (0,0) is missing, and @

are both zeros, but the problem must

001
is zero. Other correlations are gilven by:

2 - i
9, P110 = a(®.10180-11%8011%101) (4.6.1)

2

7
o, P_110° 96(8101%0-111 101%011) -

(h.0042)

With equations (lU.4) the autocorrelation function 1o

completed. The eleven non-zero covarlances are:

—— e T —_—




e o 3

B(zgo,%02.) = E(200,201.0 = 9,P01.°

Blz.n 2 }o= o2 E(z Zin } =@
0l1.70-1. gPge, * B\E_ng “ip., 2P 20,2

2
7 = ] Z o=
B(2_14.2%00.) = B(2p0.%10.) = 9,P10.

P

E(291,210.) = B(2.10.%0-1.) = 92110’

2

E(z_19,%201,) = E(2g_.1,210,)= 9,P_110> and

L
E(249.1%2000) = 92f001 °

The invertibility conditions are found by inversion

of (4.1). The restrictions on the constants ¢, and

the expression of (4.1) as an infinite autoregreseive

time series in X1s%, and t are glven In the paper of
Aroian,Voss, Oprian . Discussion of autoregressive
series, AR, are given in Aroilan, and Taneja,

and interrelationships between AR and AM, and the comblned

ARMA are given in Aroian, Oprian, Voss and TaneJa.
5. Problems and Prospects

Are there problems in m dimensional time series
for m>0, which may or mav not involve a silngle time
parameter? In such cases relationships in all varilables
are considered without respect to the time varilable.
Consider the variahle z the percent of a mineral avallable
at discrete positions xli,xei,x31. Here there 1is no time
parameter and z may be consldered statlonary as 1 varles
between -» and . The stepsize 1 would vary for each

dimension., A fundamental problem in ceology then 1s
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to evaluate z at (xli’x2i’x31) and to delineate the

extent of a mine. In meteorology we have the temperature

z, dependent on Xyqs Yoqs ti, where Xys ¥y are the coordinates
of place and ti the time. In place of the temperature

we may have barometric pressure, amount of rain, and other
variables. We may think of a river face where observations
are taken at fixed points at different times. Geometrically
we view the X1s X5 plane moving along the time axis t,

a two dimensional time series. We may be in a three-
dimensional time series 1f we have addltionally the

height or depth of an observation. Or we may have two

03 two storms which are interacting

at (xl, Xps x3). This 1s a case of two time serles in

time series zq and z,

three dimensions. Let us look briefly at a problem 1in
reading scores. We may consider reading scores z of
children at time t dependent on coordinates xli’y21; two
variables influencing reading which may be considered
discrete and ordered in some way. We may consider z

to be the height of a child as Influenced by xl,x;,,x3

and t variables at dlscrete polnts, X145 Xpoqo and X4

and thelr relationship to tlme - and looklng [(or cycles
or for increase or decrease in the maln varlable Zy

as influenced by the Xqe These models include important
ones in biological sciences in environmental problems,
air pollution, problems in evolution and in medicine since
time is an important variable in all of these subjects.
Thus we see a very wide need and envisage an equally wilde
use for this statistical technique. It should bring more

understanding to these fields which presently are belng




considered in a general way wlithout the benefits of
mathematical and statistlical insights. In agriculture
z may be the yleld of a crop at place (xl,x?) influenced
by variables Xy, X), and x5, a typlcal problem which
is still not well handled without the time variable t. In
fact some geographers have already been doing this particu-
larly in space without the time variable considered. Time
series will be more informative than the usual geographic
block charts in different colors or designs. Other
examples are earthquakes, hurricanes, and storms in
geology and meteorology.

There is also the domain of history, the arts,
sociology, anthropology and their relatlonships to time
t. All of the preceding discussion may be summarized

in the single equation

Z.j -~ f(xli’XZi"..’x(m-l)i,xmi,t)’-xta’ or -°<t<to‘

The appropriate joint probability distribution 1s assumed
for the particular variate values of the variables, Researches
in this field are clearly of the greatest importance and

urgency.
6. Correlation Analysis Versus Time Serles

We may consider time series in m dimensions as
simply problems in correlation theory with the appropriate
variables and variate values in a particular case.
However if our interest is in cyclical sltuations, stationary
time series or time series which may be transformed into

stationary time series by use of appropriate operators,
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are much to be preferred. They provide useful models.
The two methods should give the same final results

but the time series approach should give more insight
dependent, on the particular model being chosen -
autoregressive, moving average or a mixture of these

two. Our results will be linear in the variable -

which may e¢liminate interesting results in the nonlinear
case, However, nonlinear time serles elther stationary
or not should also be considered. In other papers we
have investigated the autoregressive model in m dimensions,
the moving average, a mixture of these, and the resulting
problems of definition, estimation, and the relationships
of these models to each other. This work will involve
the autocorrelation function in m dimensions, the cross
correlation function, and the multiple coefficient of

correlation function, all in m dimensions.
7. Conclusion

Time series in m-dimensions have been defined. Some
examples show the importance of the subject. The inter-
relationships among n time series in m dimensions are very
briefly discussed for n=l and m2l. Particular problems
to be investigated are m dimensional movin; average and auto-
regressive time series and thelr mixtures. One AM model is
discussed at length as an example. The paper has purposely
been general in order to obtaln a very broad view of this
subject and its scientific importance. The relationship
between ccrrelation theory and time series is briefly

examined. The wide applicability of n time series inm

—— el Y z — e —




13

dimensions series to the socilal sciences, the biological
sciences, history, anthropology, economics, environmental

problems, and meteorology is indicated.
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